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Abstract
Density functional theory (DFT) of classical fluids in the canonical
ensemble (CE) is studied by means of Legendre transform techniques in an
extended variable space. The constraint that arises from having a fixed number
of particles N is incorporated into the theory by considering N and its conjugate,
the CE chemical potential µ, as additional variables in the DFT analysis of the
problem. The method allows for obtaining an Ornstein–Zernike (OZ) equation
in the CE. A comparison is made with other approaches to the problem. In
particular, µ is identified with the Lagrange multiplier related to the fixed-N
constraint and a further Legendre transform leads to an equivalent OZ equation
equal to that of the grand canonical ensemble (GCE) in terms of functional
derivatives stripped off from their asymptotic behaviour. The CE analogous
to the GCE direct correlation function is introduced as an excess (over ideal)
quantity in terms of which we obtain a CE compressibility equation.

1. Introduction

Density functional theory (DFT) of classical fluids is based on the fact that the free energy can
be expressed as a functional of the inhomogeneous equilibrium density, and this functional
yields all the relevant information of the fluid [1–5].

The DFT approach is equivalent to the more traditional statistical mechanics description
of the fluid in terms of the partition function expressed as a functional of the external potential.
It is well known that the change from one representation to the other can be presented as a
functional Legendre transform in which the external potential and the inhomogeneous density
are conjugate variables [3, 6, 7]. That this transformation can be made is ensured by the
Hohenberg–Kohn theorems for DFT [1, 2, 5] or equivalently by the convexity properties of the
involved functionals [7]. In the grand canonical ensemble (GCE) this Legendre transform
leads in a natural way to the formulation of the Ornstein–Zernike (OZ) equation for the
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inhomogeneous fluid as a matrix inversion relation. That is, the product of the Hessian matrix
of the direct transform by its inverse (the Hessian of the inverse transform) is equal to the
identity matrix [3]. Of course, one of these matrices is related to the total correlation function
and the other to the direct correlation function of the fluid so that the familiar OZ relation in
these terms is easily recovered [3].

In the canonical ensemble (CE), however, a direct extension of these ideas is not possible
because of the normalization condition for the total correlation function, which implies that
the related Hessian matrix is singular and therefore not invertible [8, 9]. In this paper, we shall
see how this difficulty can be solved by resorting to an extended variable space in which the
chemical potential and the number of particles are used as additional variables in a Legendre
transform approach to DFT in the CE. Furthermore, we shall see how a straightforward
connection to previous approaches to the problem [8, 9] can be made by means of Legendre
transform techniques. These techniques have been exploited by Nalewajski et al [10] in the
field of DFT of electronic systems.

This paper is structured as follows. In section 2 we briefly present the main steps for
the Legendre transform approach to DFT in the GCE and how it leads naturally to the OZ
equation. Section 3 is devoted to the CE. In section 3.1 we show how the direct extension
of the GCE procedure cannot lead to a CE–OZ relation due to the singular behaviour of the
Hessian matrix. This singular behaviour is ascribed to the fixed-N constraint that arises from
the normalization of the equilibrium density. In spite of this fact, a Euler–Lagrange equation
for the density is obtained by means of the Lagrange multiplier technique. In section 3.2 we
consider an extended variable space in which one can reformulate the DFT in the CE, obtaining
the same Euler–Lagrange equation as in section 3.1 but with a non-singular Hessian matrix. In
section 3.3 we obtain an OZ equation in terms of the Hessian matrix for the extended variable
space. By means of an additional Lagrange transform, in section 3.4 we obtain an equivalent
OZ equation, which turns out to coincide with the results obtained by Ramshaw [8] and by
Hernando and Blum [9], by considering the asymptotic behaviour of the fluid correlations [11].
In section 4 we apply the results of the paper to some simple cases. We first consider the ideal
gas for which we obtain a free-energy functional in the CE and check the consistency of the
different OZ relations previously obtained. We next define the direct correlation function in
the CE as an excess (over ideal) second functional derivative of the CE functional. Finally, the
application of the theory to the uniform fluid leads to an OZ equation in the CE which only
differs from the GCE–OZ equation by a 1/N term. We also obtain a compressibility equation
in the CE analogous to its GCE counterpart. We conclude with a brief summary of the main
results of the paper. A preliminary account of this work has been presented elsewhere [12].

2. DFT and Legendre transforms in the grand canonical ensemble

We consider a classical fluid in the GCE (fixed temperature T and chemical potential µgc) in
the presence of an external potential Vext (r). For this system the grand partition function � is
a functional of υgc(r) ≡ µgc − Vext (r) and can be written as

�[υgc] =
∞∑

N=0

�−3N

N!

∫
dr1 . . . drN exp[−βUint(r1, . . . , rN )]

N∏
i=1

exp[βυgc(ri )] (1)

where � is the de Broglie thermal wavelength, ri is the position of particle i , β = 1/kB T , and
Uint is the interparticle potential. In terms of � the grand potential �gc can be expressed as

−β�gc[υgc] = ln �[υgc], (2)
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and, as is well known, its functional derivative yields the inhomogeneous equilibrium density

ρgc(r) = −δ�gc[υgc]

δυgc(r)
. (3)

If one wishes to consider a functional of the variable ρgc instead of υgc without any loss
of information, the usual procedure is to perform a Legendre transform of �gc. The new
functional is given by

Fgc[ρgc] = �gc[υgc[ρgc]] +
∫

ρgc(r)υgc(r, [ρgc]) dr, (4)

where we have made explicit that υgc is the (generalized) potential that determines ρgc via
equation (3). It is clear that Fgc is the well-known intrinsic Helmholtz free energy in the GCE.
The usual variational principle of DFT is now introduced by means of the following functional
which depends both on ρ̂ and on υgc

�υgc [ρ̂] = Fgc[ρ̂] −
∫

ρ̂(r)υgc(r) dr. (5)

Minimizing �υgc [ρ̂] with respect to ρ̂ at constant υgc we obtain the usual Euler–Lagrange
equation

δFgc[ρ̂]

δρ̂(r)

∣∣∣∣
ρ̂=ρgc

− υgc(r) = 0, (6)

where the minimum is attained for the equilibrium density ρgc and �υgc [ρ̂]|ρ̂=ρgc = �gc, that is,
�υgc reduces to the grand potential. In the preceding derivation we have obtained the intrinsic
free energy from a Legendre transform of the grand potential. It is instructive to see that the
inverse route can also be taken. This is the involution property of the Legendre transform. We
rewrite equation (6) as

υgc(r) = δFgc[ρgc]

δρgc(r)
(7)

where ρgc is the equilibrium density. The Legendre transform of Fgc is a functional (�gc) that
depends on υgc and is obtained from

�gc[υgc] = Fgc[ρgc[υgc]] −
∫

ρgc(r, [υgc])υgc(r) dr. (8)

Now we have made explicit that ρgc is the density that determines υgc via equation (7). We
next consider the following functional of ρgc and υ̂

Fρgc [υ̂] = �gc[υ̂] +
∫

ρgc(r)υ̂(r) dr. (9)

For this functional we have the variational principle

δFρgc [υ̂]

δυ̂(r)

∣∣∣∣
υ̂=υgc

= δ�gc[υ̂]

δυ̂(r)

∣∣∣∣
υ̂=υgc

+ ρgc(r) = 0. (10)

The second equality in equation (10) reduces to equation (3) and, when υ̂ = υgc, Fρgc [υ̂]
becomes the free energy Fgc. This variational principle has been rigorously derived by Caillol
using the convexity properties of the involved functionals [7]. These convexity properties
imply that the Hessian matrices

δρgc(r1)

δυgc(r2)
= − δ2�gc[υgc]

δυgc(r1)δυgc(r2)
(11)
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and

δυgc(r1)

δρgc(r2)
= δ2Fgc[ρgc]

δρgc(r1)δρgc(r2)
(12)

which define the change of variables ρgc ↔ υgc are not singular and inverse to each other, i.e.∫
δυgc(r1)

δρgc(r3)

δρgc(r3)

δυgc(r2)
dr3 = δ(r1 − r2) (13)

where δ(x) is the usual delta function. This equation is the OZ relation for an inhomogeneous
fluid written in compact notation [3].

3. DFT in the canonical ensemble

3.1. The failure of the single-variable formalism

In the CE the partition function QN is a function of the (fixed) number of particles N and a
functional of the external potential Vext (r). It can be written as

QN [Vext ] = �−3N

N!

∫
dr1 . . . drN exp[−βUint(r1, . . . , rN )]

N∏
i=1

exp[βVext (ri )]. (14)

In terms of QN , the CE free energy FN can be expressed as

−β FN [Vext ] = ln QN [Vext ], (15)

and its functional derivative w.r.t. Vext is the CE equilibrium density

ρ(r) = δFN [Vext ]

δVext (r)
. (16)

A Legendre transform from FN [Vext ] to a new functional that depends of N and ρ must be
done with caution because equation (16) does not define a good change of variables since the
corresponding Hessian matrix

δ2 FN [Vext ]

δVext (r1)δVext (r2)
= δρ(r1)

δVext (r2)
(17)

is singular. This is due to the normalization constraint∫
ρ(r) dr = N (18)

which implies ∫
δρ(r1)

δVext (r2)
dr1 = δN

δVext (r2)
= 0. (19)

Consequently, an OZ equation equivalent to equation (13) cannot be obtained using the present
approach [12].

As an aside, we note that equation (19) is equivalent to the usual normalization relations
for the different two-body correlation functions of the fluid in the CE. These functions are
related to the above functional derivative via (see, for example, [13])

−β−1 δρ(r1)

δVext (r2)
= G(r1, r2) = ρ(2)(r1, r2) − ρ(r1)ρ(r2) + ρ(r1)δ(r1 − r2)

= ρ(r1)ρ(r2)h(r1, r2) + ρ(r1)δ(r1 − r2) (20)
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where G is the density–density correlation function, ρ(2) is the two-body density, and h is the
total correlation function. From equations (19) and (20) we obtain the well-known results (in
the CE) ∫

G(r1, r2) dr1 = 0, (21)
∫

ρ(2)(r1, r2) dr1 = (N − 1)ρ(r2) (22)

and ∫
ρ(r1)h(r1, r2) dr1 = −1 (23)

where we have used equation (18).
In spite of the singular behaviour of the Hessian matrix we proceed with the proposed

Legendre transform. The new functional is obtained from

F̄(N, [ρ]) = FN [Vext ] −
∫

ρ(r)Vext (r) dr, (24)

where the variable Vext must be eliminated using equations (15) and (16). Let us assume that
this elimination can be done. In this case, due to the constraint (19), one has that the functional
F̄ only depends on the density, i.e.

F̄(N, [ρ]) = F̄

(∫
ρ(r) dr, [ρ]

)
≡ F[ρ]. (25)

In order to introduce a variational principle in the same way as we did in the GCE we consider
the functional

FVext [ρ̂] = F[ρ̂] +
∫

ρ̂(r)Vext (r) dr, (26)

which depends both on Vext and on ρ̂. The minimization must be done taking into account
the fixed-N constraint (equation (18)) and thus one must resort to the Lagrange multiplier
technique. We obtain

δF[ρ̂]

δρ̂(r)

∣∣∣∣
ρ̂=ρ

+ Vext (r) = µ. (27)

This is the usual Euler–Lagrange equation in the CE (see [4]) where F is the intrinsic CE
free-energy functional. The Lagrange multiplier µ is determined using equation (18) and can
be identified with the chemical potential. We see that the singular behaviour of the Hessian
matrix can be bypassed by means of the Lagrange multiplier technique but only in part; we
have a Euler–Lagrange equation for the CE equilibrium density but we lack an OZ relation
which in the GCE arises in a natural way. In the following subsection, we reformulate the
problem using an extended variable space in which the Lagrange multiplier is the conjugate
variable of N and the corresponding Hessian is not a singular matrix so that an OZ relation
can be formulated.

3.2. The extended variable space formalism in the canonical ensemble

Taking into account that the CE free energy defined in equation (15) is a function of N and
a functional of Vext we consider the Legendre transform from the set {N, Vext } to the new
set {µ, ρ}, where the equations for the change of variables are the following well-known
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expressions for the equilibrium density and the chemical potential (of course, ρ and µ differ
from those of the GCE) in terms of derivatives of FN

ρ(r) =
(

δFN [Vext ]

δVext (r)

)
N

(28)

and

µ =
(

∂ FN [Vext ]

∂ N

)
Vext

. (29)

The Legendre transform is given by

U(µ, [ρ]) = F(µ, [ρ]) −
∫

ρ(r)Vext (r, µ, [ρ]) dr − µ

∫
ρ(r) dr, (30)

where we have used N = ∫
ρ(r) dr (equation (18)) and we define F(µ, [ρ]) ≡

F∫
ρ(r) dr[Vext (µ, [ρ])]. We next consider the following functional that depends on both {µ̂, ρ̂}

and {N, Vext }:
FN,Vext (µ̂, [ρ̂]) = U(µ̂, [ρ̂]) +

∫
ρ̂(r)Vext (r) dr + µ̂N, (31)

for which one has the variational principle(
δU(µ̂, [ρ̂])

δρ̂(r)

)
µ̂

∣∣∣∣
µ̂=µ,ρ̂=ρ

+ Vext (r) = 0 (32)

and (
∂U(µ̂, [ρ̂])

∂µ̂

)
ρ̂

∣∣∣∣
µ̂=µ,ρ̂=ρ

+ N = 0. (33)

Here µ and ρ are the equilibrium chemical potential and density and, for these equilibrium
values, FN,Vext (µ̂, [ρ̂]) reduces to the Helmholtz free energy, i.e. one has

FN,Vext (µ̂ = µ, [ρ̂ = ρ]) = FN [Vext ]. (34)

Substituting equation (30) into (33) and taking into account equation (18) one finds that the
functional

F ≡ U + µ

∫
ρ(r) dr = F(µ, [ρ]) −

∫
ρ(r)Vext (r, µ, [ρ]) dr (35)

does not depend on µ and coincides with the functional introduced in equation (25). Since
F = F[ρ], from equation (32) we obtain

δF[ρ]

δρ(r)
+ Vext (r) = µ (36)

which is the same CE Euler–Lagrangeequation for the equilibrium density obtained previously
(equation (27)) using the Lagrange multiplier technique, where µ is the Lagrange multiplier
associated to the constraint (18) and F is the intrinsic free-energy functional in the CE.

3.3. Ornstein–Zernike relations

The Legendre transform considered in section 3.2 assumes that the change of variables
{N, Vext } ↔ {µ, ρ} is well defined. It is clear that {N, Vext } determine all properties of
the system and thus (via equations (28) and (29)) the new variables {µ, ρ}. The question is
whether the opposite is true, i.e. can {µ, ρ} determine {N, Vext }? The answer is yes, and is
provided by the Hohenberg–Kohn theorems for DFT [5] which state that Vext is determined,
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within an additive constant (µ), by ρ. Of course, ρ determines N by quadrature. Since
the transform {N, Vext } ↔ {µ, ρ} is well defined one finds that the corresponding Hessian
matrices are not singular and each inverse of the other, i.e.

∂(N, Vext )

∂(µ, ρ)

∂(µ, ρ)

∂(N, Vext )
= Id (37)

where Id is the identity matrix in the extended variable space. More explicitly∫ (
δρ(r3)

δVext (r1)

)
N

(
δVext (r2)

δρ(r3)

)
µ

dr3 +

(
δµ

δVext (r1)

)
N

(
∂Vext (r2)

∂µ

)
ρ

= δ(r1 − r2) (38)

∫ (
δρ(r3)

δVext (r1)

)
N

(
δN

δρ(r3)

)
µ

dr3 +

(
δµ

δVext (r1)

)
N

(
∂ N

∂µ

)
ρ

= 0 (39)

∫ (
∂ρ(r3)

∂ N

)
Vext

(
δVext (r2)

δρ(r3)

)
µ

dr3 +

(
∂µ

∂ N

)
Vext

(
∂Vext (r2)

∂µ

)
ρ

= 0 (40)

∫ (
∂ρ(r3)

∂ N

)
Vext

(
δN

δρ(r3)

)
µ

dr3 +

(
∂µ

∂ N

)
Vext

(
∂ N

∂µ

)
ρ

= 1. (41)

These equations can be simplified by means of equations (18) and (36). On the one hand,
equation (18) implies(

δN

δρ(r3)

)
µ

= 1 (42)

and (
∂ N

∂µ

)
ρ

= 0, (43)

which substituted into equations (39) and (41) lead, respectively, to∫ (
δρ(r2)

δVext (r1)

)
N

dr2 = 0 (44)

and ∫ (
∂ρ(r3)

∂ N

)
Vext

dr3 = 1. (45)

We note that equations (44) and (45) can also be obtained by direct derivation of equation (18).
We also note that equation (44) is equation (19) written in the extended variable space
formalism. On the other hand, equation (36) implies(

∂Vext (r2)

∂µ

)
ρ

= 1 (46)

and (
δVext (r1)

δρ(r2)

)
µ

= − δ2F[ρ]

δρ(r1)δρ(r2)
. (47)

The symmetry of the latter equation can be seen as a direct consequence of the following
Maxwell relations that arise from the Legendre transform(

δρ(r1)

δVext (r2)

)
N

=
(

δρ(r2)

δVext (r1)

)
N

= −βG(r1, r2) (48)
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(
∂ρ(r1)

∂ N

)
Vext

=
(

δµ

δVext (r1)

)
N

(49)

(
δVext (r1)

δρ(r2)

)
µ

=
(

δVext (r2)

δρ(r1)

)
µ

= − δ2F[ρ]

δρ(r1)δρ(r2)
≡ −β−1L(r1, r2) (50)

(
∂Vext (r1)

∂µ

)
ρ

=
(

δN

δρ(r1)

)
µ

, (51)

where we have defined the ‘inverse’ kernel L and identified the density–density correlation
function G. Next, substituting equation (46) into equations (38) and (40), and using the
preceding Maxwell relations, we obtain∫

G(r1, r3)L(r3, r2) dr3+

(
∂ρ(r1)

∂ N

)
Vext

= δ(r1 − r2) (52)

∫ (
∂ρ(r3)

∂ N

)
Vext

L(r1, r3) dr3 = β

(
∂µ

∂ N

)
Vext

(53)

which are the OZ relations in the CE.

3.4. Yet another Ornstein–Zernike relation

Let us consider the ‘inverse’ route to the single-variable approach of section 3.1. Taking into
account the Euler–Lagrange equation (27) we consider that, instead of Vext , the conjugate
variable of ρ is the generalized external potential

υ(r) ≡ µ − Vext (r) = δF[ρ]

δρ(r)
(54)

which is, of course, different from the GCE υgc. Then, we are now in a situation analogous to
that of section 2: equation (54) together with the CE intrinsic free-energy functional F allows
one to consider a Legendre transform that leads to a CE functional �[ρ] defined like its GCE
counterpart (8). Again, one has a variational principle like that of equation (10) and analogous
to the OZ relation (13) but now formulated in the CE:∫

δυ(r1)

δρ(r3)

δρ(r3)

δυ(r2)
dr3 = δ(r1 − r2). (55)

Of course, the above procedure is only possible if the transform ρ ↔ υ is a good change of
variables and equation (55) is well defined in the CE. This can be demonstrated by noticing that
this equation has been previously obtained by Ramshaw [8] and by Hernando and Blum [9]
following a completely different approach based on the asymptotic behaviour of the two-body
correlation functions in the CE fluid [11]. Furthermore, as we show below, equation (55) is
equivalent to the OZ relations obtained in section 3.3. In order to compare with the functions
G(r1, r2) and L(r1, r2) defined in equations (48) and (50), respectively, let us denote

Ĝ(r1, r2) = β−1 δρ(r1)

δυ(r2)
(56)

and

L̂(r1, r2) = β
δυ(r1)

δρ(r2)
, (57)

so that equation (55) can be re-expressed as∫
Ĝ(r1, r3)L̂(r3, r2) dr3 = δ(r1 − r2). (58)
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In what follows, we show that this equation is indeed equivalent to the OZ relations (52)
and (53). We first obtain appropriate expressions for Ĝ and L̂ in terms of G and L, respectively,
and then we show the equivalence. Taking into account that the CE density ρ is the same for
all Legendre representations, we consider ρ = ρ(r, N, [Vext ]) and, using the chain rule for
derivation, we obtain

βĜ(r1, r2) =
∫ (

δρ(r1)

δVext (r3)

)
N

δ(µ − υ(r3))

δυ(r2)
dr3 +

(
∂ρ(r1)

∂ N

)
Vext

δN

δυ(r2)

= βG(r1, r2)+

(
∂ρ(r1)

∂ N

)
Vext

δN

δυ(r2)
(59)

where we have used equations (44) and (48). Next, considering that Ĝ(r1, r2) = Ĝ(r2, r1),
G(r1, r2) = G(r2, r1), and taking into account equations (44) and (45), we obtain

δN

δυ(r2)
=

∫
βĜ(r1, r2) dr1 = C

(
∂ρ(r2)

∂ N

)
Vext

(60)

where a further integration leads to

C =
∫

δN

δυ(r1)
dr1 =

∫ ∫
βĜ(r1, r2) dr1 dr2. (61)

So, we obtain the result of Ramshaw [8]

βĜ(r1, r2) = βG(r1, r2) + C

(
∂ρ(r1)

∂ N

)
Vext

(
∂ρ(r2)

∂ N

)
Vext

(62)

with C given by equation (61). Furthermore, from the definitions of L and L̂ one has

L̂(r1, r2) = β
δ2F[ρ]

δρ(r1)δρ(r2)
≡ L(r1, r2). (63)

Using equations (62) and (63), from equation (52) we obtain∫
Ĝ(r1, r3)L̂(r3, r2) dr3 − δ(r1 − r2)

= −
(

∂ρ(r1)

∂ N

)
Vext

[
1 − C

β

∫
L̂(r1, r3)

(
∂ρ(r3)

∂ N

)
Vext

dr3

]
(64)

which becomes the OZ relation (58) because, using equations (57) and (60) and the chain rule
for derivation, one has

C

β

∫
L̂(r1, r3)

(
∂ρ(r3)

∂ N

)
Vext

dr3 =
∫

δυ(r3)

δρ(r1)

δN

δυ(r3)
dr3 = δN

δρ(r1)
= 1. (65)

From equations (65) and (53) one obtains

β

(
∂µ

∂ N

)
Vext

= C−1, (66)

in agreement with the results of Ramshaw [8] and Lebowitz and Percus [11].
Finally, we note that it is not difficult to show that the results of Ramshaw [8] lead to the

results obtained in section 3.3, i.e. equation (58) together with equations (62), (63) and (66)
yield the OZ relations (52) and (53).
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4. Applications

4.1. The ideal gas

The Helmholtz free energy of the classical ideal gas is given by

−β FN [Vext ] = N log

(
�−3

∫
exp[−βVext (r)] dr

)
− log N!. (67)

From equation (28) we obtain

ρ(r, N, [Vext ]) = N
exp[−βVext (r)]∫
exp[−βVext (r)] dr

(68)

and from equation (29)

−βµ(N, [Vext ]) = log

(
�−3

∫
exp[−βVext (r)] dr

)
− (log N!)′, (69)

where the prime (′) denotes derivation w.r.t. N . These results can be inverted. From
equations (68) and (69) we obtain

−βVext (r, µ, [ρ]) = −βµ + log(�3ρ(r)) + (log N!)′ − log N, (70)

where N = N[ρ] = ∫
ρ(r) dr is trivially obtained from integration of equation (68). Inserting

these expressions into equation (35) yields the intrinsic free-energy functional of the ideal gas
in the CE [12]

βFid [ρ] = −
∫

ρ(r)(log
(
�3ρ(r)

) − 1) dr + φ

(∫
ρ(r) dr

)
(71)

with φ(x) = log x! − x log x + x . This functional differs from the well-known result in the
GCE by the term φ(

∫
ρ(r) dr), i.e. by φ(N). For large N , φ(N) ≈ (log N)/2, in agreement

with the saddle point approximation of [14].
From equation (35) one has Uid(µ, [ρ]) = βFid [ρ] − µ

∫
ρ(r) dr. Substituting this

expression in equations (31)–(34), which define the variational principle in the extended
variable space, we recover the results (67)–(69) for the Helmholtz free energy, the density
and the chemical potential, respectively. Of course, equation (71) together with the Euler–
Lagrange equation (27) and the constraint (18) yield the same results.

In what follows, we test the OZ equations (52) and (53) for the ideal gas. The density–
density correlation function is readily obtained from equations (68) and (48). We obtain the
result

Gid(r1, r2) = ρ(r1)δ(r1 − r2) − 1

N
ρ(r1)ρ(r2), (72)

where, from equation (20) we obtain the well-known result for the total correlation function
hid = −1/N . The ‘inverse’ kernel is obtained from equations (70) and (50):

Lid (r1, r2) = 1

ρ(r1)
δ(r1 − r2) − 1

N
+ (log N!)′′. (73)

Inserting these results into equation (52) we obtain for the ideal gas(
∂ρ(r1)

∂ N

)
Vext

= ρ(r1)

N
(74)

and, substituting equations (73) and (74) into equation (53) we obtain

β

(
∂µid

∂ N

)
Vext

= (log N!)′′. (75)
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Equations (74) and (75) coincide, respectively, with the results that one would directly obtain
from derivation of equations (68) and (69),which shows the consistency of the OZ relations (52)
and (53).

On the other hand, if we consider the modified density–density correlation function (62),
we obtain

Ĝid(r1, r2) = ρ(r1)δ(r1 − r2) +

(
1

N2(log N!)′′
− 1

N

)
ρ(r1)ρ(r2). (76)

Following Ramshaw [8] and Hernando and Blum [9], one can introduce a modified total
correlation function ĥ via Ĝ(r1, r2) = ρ(r1)ρ(r2)ĥ(r1, r2) + ρ(r1)δ(r1 − r2). In the
present case, this function reduces to ĥid = (N2(log N!)′′)−1 − N−1. Since, for large N ,
(log N!)′′ ∼ N−1 + O(N−2), we obtain that ĥid is equal to hid stripped off from its leading
asymptotic behaviour, in agreement with previous results [9]. Finally, taking into account that
L̂ = L, one can check that equations (76) and (73) fulfil the OZ relation (58).

4.2. The direct correlation function in the CE

In analogy with the GCE we introduce the CE direct correlation function c(2) as

c(2)(r1, r2) = −β
δ2(F[ρ] − Fid [ρ])

δρ(r1)δρ(r2)
(77)

with Fid given by equation (71). Using equations (77) and (50) the ‘inverse’ kernel (50) can
be rewritten as

L(r1, r2) = 1

ρ(r1)
δ(r1 − r2) − 1

N
+ (log N!)′′ − c(2)(r1, r2). (78)

From this expression and (20) one can rewrite the OZ relations (52) and (53) in terms of the
total and the direct correlation functions. We obtain

h(r1, r2) = c(2)(r1, r2) +
∫

ρ(r3)c
(2)(r1, r3)h(r3, r2) dr3 − 1

ρ(r2)

(
∂ρ(r2)

∂ N

)
Vext

(79)

and

β

(
∂µ

∂ N

)
Vext

= β

(
∂µid

∂ N

)
Vext

+
1

ρ(r1)

(
∂ρ(r1)

∂ N

)
Vext

− 1

N
−

∫ (
∂ρ(r2)

∂ N

)
Vext

c(2)(r1, r2) dr2,

(80)

where we have used equation (75). Multiplying equation (80) by ρ(r1), integrating over r1

and using equation (45), we obtain

β

(
∂µ

∂ N

)
Vext

= β

(
∂µid

∂ N

)
Vext

− 1

N

∫ ∫
ρ(r1)

(
∂ρ(r2)

∂ N

)
Vext

c(2)(r1, r2) dr1 dr2. (81)

We note that this important relation can be considered as the CE version of the GCE
compressibility equation. We also note that the related equation in terms of the total correlation
function is simply the normalization relation (23).

Finally, from equations (80) and (81), we obtain the following relation that links the
derivative of the density w.r.t. N to the direct correlation function:(

∂ρ(r2)

∂ N

)
Vext

= ρ(r2)

N

(
1 +

∫ ∫
ρ(r1)

(
∂ρ(r3)

∂ N

)
Vext

(c(2)(r2, r3) − c(2)(r1, r3)) dr1 dr3

)
.

(82)
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4.3. The uniform fluid

The equations derived in the previous subsection are notably simplified in the uniform limit.
In this limit, one has ∂ρ/∂ N = ρ/N because ρ = N/V , where V is the volume of the system.
Therefore, equation (79) becomes

h(r12) = c(2)(r12) + ρ

∫
c(2)(r13)h(r32) dr3 − 1

N
(83)

where ri j ≡ |ri −r j |. We have taken into account that the uniform fluid is both translationally
and rotationally invariant. This equation only differs by the term 1/N from its GCE analogue.
From equation (81) one obtains the compressibility equation

(ρkB Tχ)−1 = (ρkB T χid)
−1 − ρ

∫
c(2)(r) dr (84)

where r = |r|. Following Lebowitz and Percus [11] we have considered the identity
(ρχ)−1 = N(∂µ/∂ N )Vext , where χ is the isothermal compressibility of the system.

5. Summary

In this paper we have shown how the use of Legendre transform techniques can be of great
help in the DFT analysis of fluids in the CE.

The direct generalization to the CE of the GCE approach leads to a Hessian matrix that is
singular due to the fixed-N constraint. This singular behaviour does not allow for deriving an
OZ relation as in the GCE. In spite of this, by resorting to the Lagrange multiplier technique,
one can still obtain a Euler–Lagrange equation for the equilibrium density. The Lagrange
multiplier associated to the fixed-N constraint turns out to be the chemical potential µ.

The failure of the direct approach to give an OZ relation in the CE is bypassed by
considering an extended variable space in which N and µ are considered as conjugate variables
that, in addition to the density and the external potential,play an important role in the variational
treatment of the problem. In this approach, the related Hessian matrix is no longer singular
and an OZ equation is obtained by equating the product of the Hessian matrix by its inverse
to the identity matrix. The OZ relations can be further simplified by taking into account the
fixed-N constraint and the Maxwell relations that arise naturally in the theory. We obtain a
set of two equations linking the density–density correlation function G, the ‘inverse’ kernel L
and the derivatives (∂ρ(r)/∂ N)Vext and (∂µ/∂ N)Vext .

The CE Euler–Lagrange equation suggests an additional Legendre transform with a non-
singular Hessian matrix and thus another equivalent OZ relation can be formulated. This
new relation is the same as that previously obtained by Ramshaw [8] and by Hernando and
Blum [9] by considering the asymptotic behaviour of the two-body correlation function. While
the modified inverse kernel L̂ involved in the new OZ equation coincides with the former one
L, the modified density–density correlation function Ĝ is equal to the former one G stripped
off from its asymptotic behaviour.

The application of the extended variable space formalism to the ideal gas allows us to
obtain the CE intrinsic free-energy functional Fid . The CE direct correlation function c(2) is
then defined as the second functional derivative w.r.t. the density of the excess over the ideal
free-energy functional. The OZ relation is rewritten in terms of c(2) and the total correlation
function h. Finally, for the uniform fluid in the CE, one can obtain a compressibility equation
and an OZ equation that only differs from its GCE counterpart by the term 1/N .
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